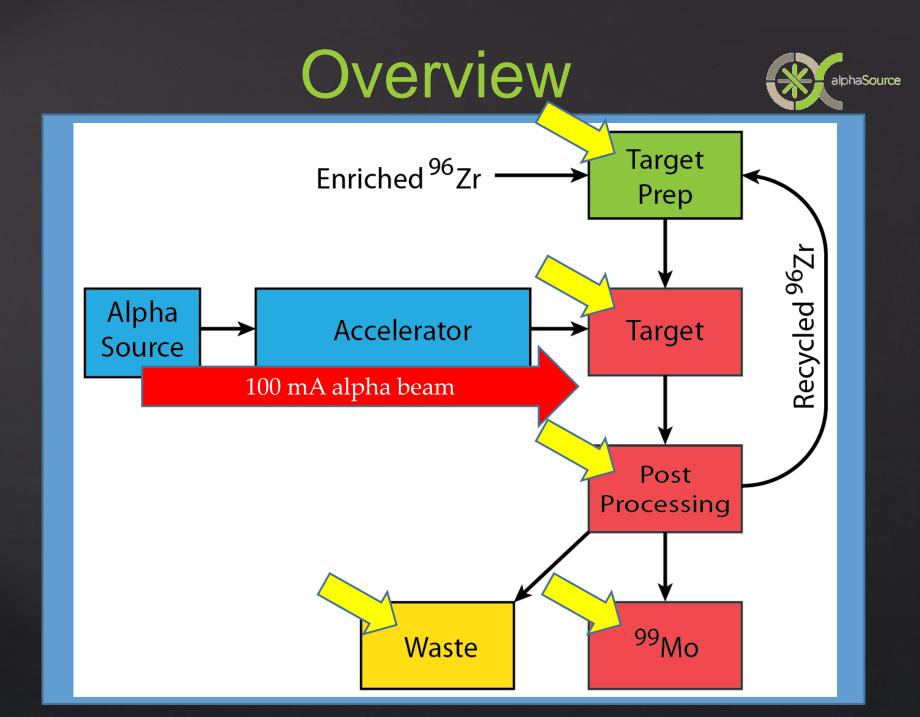
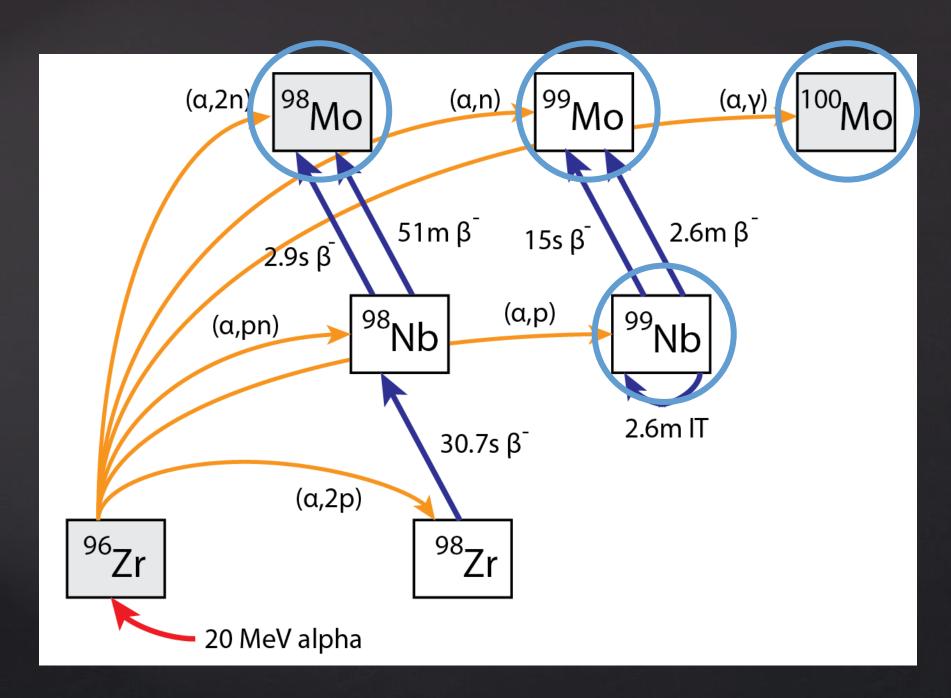
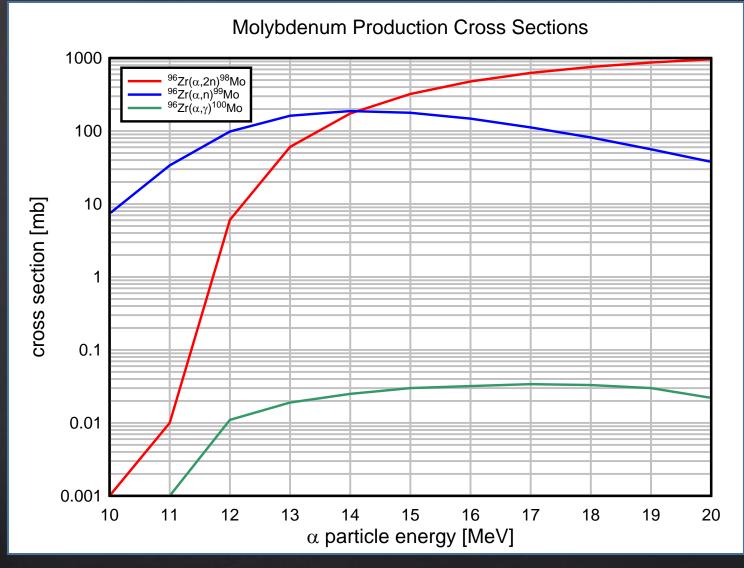
Production of ⁹⁹Mo Using High-Current Alpha Beams

G.B. Rosenthal and H.C. Lewin

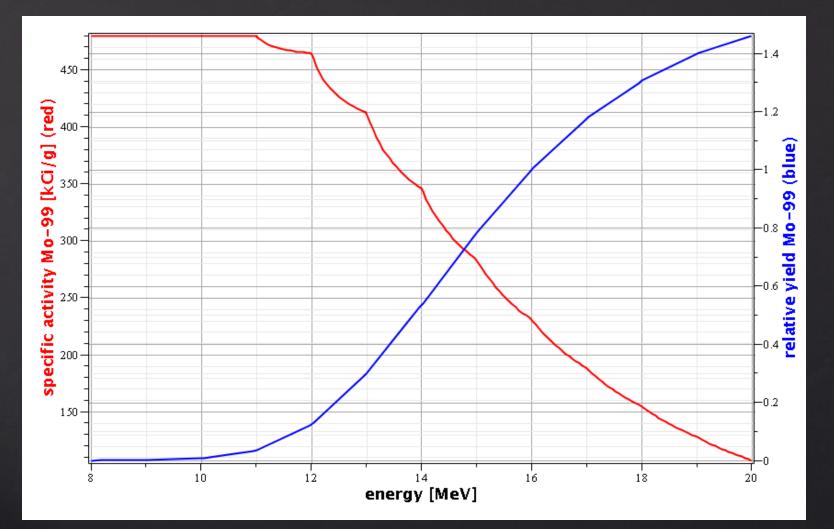

Alpha Source, LLC, 8581 Santa Monica Blvd, #471 Los Angeles, CA 90069 – USA



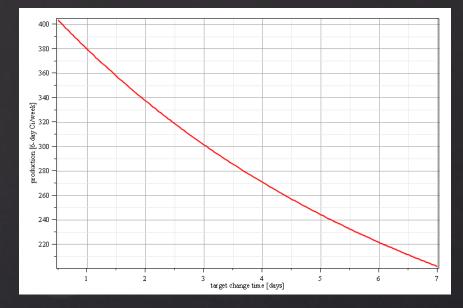
Introduction


- ⁹⁹Mo from ⁹⁶Zr by alpha bombardment
- ⁹⁶Zr(α,n)⁹⁹Mo
- High specific activity (> 100 kCi/g)
- >14,000 6-day Ci/year/device
- No uranium involved
- Virtually no nuclear waste generated
- Simplified Chemical processing
- Compatible with current generators

Molybdenum Production



Beam Energy	⁹⁹ Mo Yield	⁹⁸ Mo Yield	⁹⁹ Mo Specific Activity
↑	1	† † †	↓ ↓


- At 20 MeV:
 - ⁹⁹Mo yield is beginning to taper off
 - Specific activity is above 100 kCi/g
 - Pure ⁹⁹Mo is about 480 kCi/g
 - Other reactions start to occur for higher beam energy

• 54.2 6-day Ci/day

- High flexibility
 - Distributed production over several accelerators
 - Each on a different production cycle
 - Inexpensive chemical processing

⁹⁹Mo Yield for 100 mA_e Beam

- Weekly yield:
 - 380 6-day Ci/week, 7 batches/week
 - 202 6-day Ci/week, 1 batch/week
 - ~280 6-day Ci/week, 3 batches/week

Duty Cycle	Annual Yield (6-day Ci)
7 batches/week	19,380
3 batches/week	~ 14,280
1 batch/week	10,302

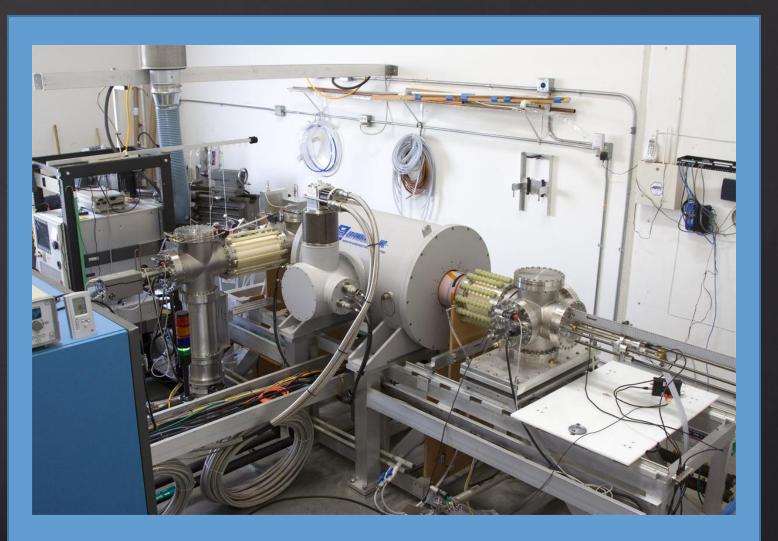
Target Material

- ⁹⁶Zr is 2.80% of natural zirconium
- Enriched ⁹⁶Zr is readily available at greater than 99.99%
- 99.99% enriched targets not necessary
- Slightly lower enrichment lowers target cost and allow additional enrichment methods
 - Little change in specific activity
 - Small decrease in yield
 - Still no significant waste material

Number	Target	Reaction	Product	Decay	Product	Decay	Product
1	⁹⁶ Zr	α,γ	¹⁰⁰ Mo				
2		a,n	⁹⁹ Mo	2.75 d			
3		α,2n	⁹⁸ Mo				
4		a,p	99Nb	15 s /2.6 m	⁹⁹ Mo		
5		a,pn	98Nb	2.9 s / 51 m	⁹⁸ Mo		
6		α,2p	⁹⁸ Zr	30.7 s	⁹⁸ Nb	2.9 s / 51 m	⁹⁸ Mo
7	⁹⁴ Zr	α,γ	⁹⁸ Mo				
8		a,n	⁹⁷ Mo				
9		α,2n	⁹⁶ Mo				
10		a,p	⁹⁷ Nb	1.23 h / 53 s	⁹⁷ Mo		
11		a,pn	⁹⁶ Nb	23.4 h	⁹⁶ Mo		
12		α,2p	⁹⁶ Zr				
13	⁹² Zr	α,γ	⁹⁶ Mo				
14		a,n	⁹⁵ Mo				
15		a,2n	⁹⁴ Mo				
16 🗖		a,p	⁹⁵ Nb	35 d / 2.61 d	⁹⁵ Mo		
17 🗖		α,pn	⁹⁴ Nb	20k y / 6 m	⁹⁴ Mo		
18		α,2p	⁹⁴ Zr				
19	⁹¹ Zr	α,γ	⁹⁵ Mo				
20		a,n	⁹⁴ Mo				
21		α,2n	⁹³ Mo	3500 y / 6.9 s	⁹³ Nb		
22		a,p	⁹⁴ Nb	20k y / 6 m	⁹⁴ Mo		
23		α,pn	⁹³ Nb				
24		α,2p	⁹³ Zr	1.6M y	⁹³ Nb		
25	⁹⁰ Zr	α,γ	⁹⁴ Mo				
26		a,n	⁹³ Mo	3500 y / 6.9 s	⁹³ Nb		
27	, , , , , , , , , , , , , , , , , , ,	α,2n	⁹² Mo				
28		a,p	⁹³ Nb				
29		α,pn	⁹² Nb	700 y / 62 d	⁹¹ Zr		
30		α,2p	⁹² Zr				

Zirconium Target Purity

- ⁹³Mo Long-lived radioisotope
 - Suppress by removing ⁹⁰Zr and ⁹¹Zr
- ⁹⁵Nb, ⁹⁴Nb, ⁹²Nb Long-lived radioisotopes
 - Waste disposal issue
 - Suppress by removing ⁹⁰Zr, ⁹¹Zr, and ⁹²Zr
- ⁹³Zr Very long-lived radioisotope
 - Waste disposal issue
 - Potentially limit recycling of targets
 - Suppress by removing ⁹¹Zr


Alpha Particle Source

- Proprietary patented high-current source
- Required high current ⁴He⁺⁺ source
 - High current ⁴He⁺ is easy to make
 - High current ⁴He⁺⁺ is not so easy
- Current source 32 mA_e beam cw or pulsed
- 85% ⁴He⁺⁺ (by current)
- 6 mm beam aperture
- 0.1 (-0.05 +0.15) π·mm·mrad normalize emittance
- X-ray free ECR source
- Operated for 23,000 hours without failure
- Proton, deuterium, tritium, helion, alpha, etc.

Alpha Particle Source

Alpha Source Expansion

- Current source expansion:
 - 96% ⁴He⁺⁺
 - 50 mA_e
 - Internal or external X-ray shielding

- Future source:
 - 96% ⁴He⁺⁺
 - 120 mA_e
 - External X-ray shielding

Accelerator

- Required high current ⁴He⁺⁺ source
 - 160 keV
- Magnetic LEBT
- Room temperature RFQ
 - 8 MeV
- Advanced beam structure 20 MeV
 - Superconducting cavities
 - H-mode structure with PMQ focusing
 - Hybrid cooling (proprietary technology)
- 8-10 m total length

Targets

- 1 MW power dissipated in target
- Conventional approach:
 - Multiple targets
 - Spread beam over large area
 - Octupole expansion
 - ~1-2 kW/cm²
- Proprietary high-power target
 - Single target can dissipate 500 kW-1 MW
 - Under development

Cost Analysis

- NEA Full Cost Recovery model
 - https://www.oecd-nea.org/med-radio/guidance/docs/FCR-workbook.xlsx
- 10 systems*

Duty Cycle	Weekly Yield (6-day Ci)	Full Cost Recovery
7 batches/week	3,800	\$178
3 batches/week	~ 2,800	~\$185
1 batch/week	2,020	\$217

* - corresponds to roughly same administrative overhead and other non-editable assumptions in the model. Actual Alpha Source solution is scalable without significant change in FRC/6-day Ci.

Post-Irradiation Processing

alphaSource

- Relatively simple chemical processing
- Several methods of target processing have already been developed and verified, including effectiveness of the ⁹⁶Zr recycling
 - Ion-exchange chromatography
 - Fluorination
 - Solubility
- Additional methods are also being developed

Deployment

- Approximately 18 100 mA_e systems could supply the US demand for ⁹⁹Mo
- Seven 100 mA_e systems could replace the gap created when NRU shuts down in 2016

Conclusions

- High-current alpha beams can be an efficient source for ⁹⁹Mo
- No significant nuclear waste
- No uranium used
 - Minimal proliferation concerns
- High specific activity
- Distributed, robust production
- Conformable to market demand